RSP-3000-12

SPECIFICATION

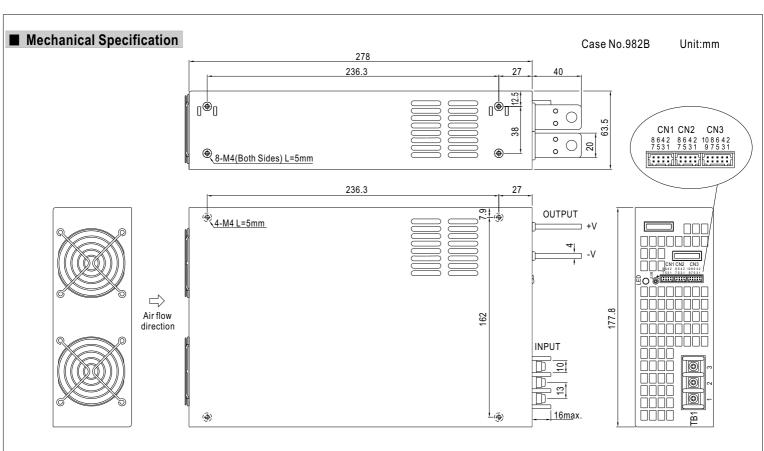
MODEL

Features:

- AC input 180 ~ 264VAC
- · AC input active surge current limiting
- High efficiency up to 90%
- Built-in active PFC function, PF>0.95
- · Protections: Short circuit / Overload / Over voltage / Over temperature / Fan alarm
- Forced air cooling by built-in DC with fan speed control function
- Output voltage can be trimmed between 20~110% of the rated output voltage
- High power density 15.6W/inch³
- · Current sharing up to 3 units
- · Alarm signal output (relay contact and TTL signal)
- · Built-in 12V/0.1A auxiliary output for remote control
- · Built-in remote ON-OFF control
- Built-in remote sense function
- · 3 years warranty

RSP-3000-24

RSP-3000-48


DC VOLTAGE 12V 24V 48V RATED CURRENT 200A 125A 62.5A **CURRENT RANGE** 0 ~ 200A 0 ~ 125A 0 ~ 62.5A RATED POWER 2400W 3000W 3000W RIPPLE & NOISE (max.) Note.2 150mVp-p 150mVp-p 200mVp-p OUTPUT 43 ~ 56V 22 ~ 28V **VOLTAGE ADJ. RANGE** 10.8 ~ 13.2V **VOLTAGE TOLERANCE Note.3** ±1.0% ±1.0% ±1.0% LINE REGULATION ±0.5% ±0.5% ±0.5% LOAD REGULATION ±0.5% ±0.5% ±0.5% SETUP. RISE TIME 1000ms, 80ms at full load **HOLD UP TIME (Typ.)** 10ms at full load **VOLTAGE RANGE** 180 ~ 264VAC 254 ~ 370VDC FREQUENCY RANGE 47 ~ 63Hz POWER FACTOR (Typ.) 0.95/230VAC at full load INPUT **EFFICIENCY (Typ.)** 90% 90.5% 86% 20A/180VAC 16A/230VAC AC CURRENT (Typ.) **INRUSH CURRENT (Typ.)** 60A/230VAC LEAKAGE CURRENT <2.0mA / 240VAC 100 ~ 112% rated output power **OVERLOAD** User adjustable continuous constant current limiting or constant current limiting with delay shutdown after 5 seconds, re-power on to recover 13.8 ~ 16.8V 28.8 ~ 33.6V 57.6 ~ 67.2V PROTECTION OVER VOLTAGE Protection type: Shut down o/p voltage, re-power on to recover $90^{\circ}\text{C} \pm 5^{\circ}\text{C} (12\text{V})$, $110^{\circ}\text{C} \pm 5^{\circ}\text{C} (24\text{V})$, $105^{\circ}\text{C} \pm 5^{\circ}\text{C} (48\text{V})$ (TSW1: detect on heatsink of power transistor) **OVER TEMPERATURE** $90^{\circ}\text{C} \pm 5^{\circ}\text{C} (12\text{V}), 85^{\circ}\text{C} \pm 5^{\circ}\text{C} (24\text{V}), 75^{\circ}\text{C} \pm 5^{\circ}\text{C} (48\text{V})$ (TSW2 : detect on heatsink of o/p diode) Protection type: Shut down o/p voltage, recovers automatically after temperature goes down 12V@0.1A(Only for Remote ON/OFF control) **AUXILIARY POWER(AUX)** Please see the Function Manual REMOTE ON/OFF CONTROL FUNCTION | ALARM SIGNAL OUTPUT Please see the Function Manual 2.4 ~ 13.2V 4.8 ~ 28V 9.6 ~ 56V **OUTPUT VOLTAGE TRIM CURRENT SHARING** Please see the Function Manual -20 ~ +70°C (Refer to "Derating Curve") **WORKING TEMP.** 20~90% RH non-condensing **WORKING HUMIDITY ENVIRONMENT** STORAGE TEMP., HUMIDITY -40 ~ +85 $^{\circ}$ C , 10 ~ 95% RH TEMP. COEFFICIENT ±0.05%/°C (0 ~ 50°C) 10 ~ 500Hz, 2G 10min./1cycle, 60min. each along X, Y, Z axes **VIBRATION** SAFETY STANDARDS UL60950-1, TUV EN60950-1 approved I/P-O/P:3KVAC I/P-FG:1.5KVAC O/P-FG:0.5KVAC WITHSTAND VOLTAGE **SAFETY & ISOLATION RESISTANCE** I/P-O/P. I/P-FG. O/P-FG:100M Ohms / 500VDC / 25°C / 70% RH **FMC EMC EMISSION** Compliance to EN55022 (CISPR22) Class B, EN61000-3-2,-3 (Note 4) **EMC IMMUNITY** Compliance to EN61000-4-2,3,4,5,6,8,11, EN55024, light industry level, criteria A MTRF 104.5K hrs min. MIL-HDBK-217F (25°C) **OTHERS** DIMENSION 278*177.8*63.5mm (L*W*H) 4Kg; 4pcs/16Kg/1.89CUFT

NOTE

PACKING

- 1. All parameters NOT specially mentioned are measured at 230VAC input, rated load and 25°C of ambient temperature.
- 2. Ripple & noise are measured at 20MHz of bandwidth by using a 12" twisted pair-wire terminated with a 0.1uf & 47uf parallel capacitor.
- 3. Tolerance: includes set up tolerance, line regulation and load regulation.
- The power supply is considered a component which will be installed into a final equipment. The final equipment must be re-confirmed that it still meets EMC directives. For guidance on how to perform these EMC tests, please refer to "EMI testing of component power supplies." (as available on http://www.meanwell.com)

AC Input Terminal Pin No. Assignment

Pin No.	Assignment
1	AC/L
2	AC/N
3	FG ±

Control Pin No. Assignment(CN1,CN2): HRS DF11-8DP-2DS or equivalent

	Pin No.	Assignment	Pin No.	Assignment	Mating Housing	Terminal
	1	RCG	5,7	-S		
Ī	2	RC	6	CS(Current Share)	HRS DF11-8DS	HRS DF11-**SC
ſ	3	PV	8	+S	or equivalent	or equivalent
Ī	4	PS				

-S:-Remote Sensing

RCG: Remote ON/OFF Ground RC: Remote ON/OFF

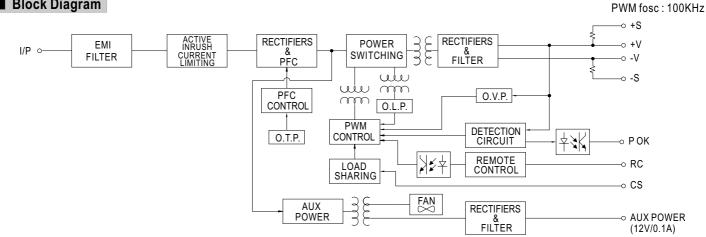
CS: Load Share :Output Voltage External Control +S: +Remote Sensing

PS: Reference Voltage Terminal

Control Pin No. Assignment(CN3): HRS DF11-10DP-2DS or equivalent

				,						
	Pin No.	Assignment	Mating Housing	Terminal						
ĺ	1	P OK GND	4	P OK2	7	AUXG	10	OL-SD	UD0 DE44 40D0	LIDO DE44 **00
İ	2	P OK	5	RCG	8	AUX			HRS DF11-10DS or equivalent	or equivalent
	3	P OK GND2	6	RC	9	OLP			or oquivaloni	or oquivalent

P OK GND: Power OK Ground

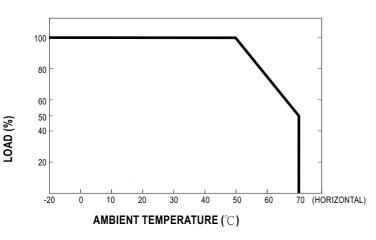

RCG: Remote ON/OFF Ground

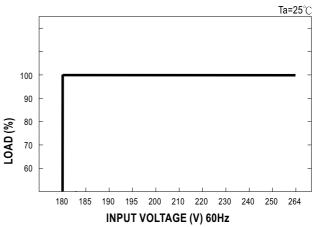
AUX: Auxiliary Output

P OK: Power OK Signal (Relay Contact) P OK2: Power OK Signal (TTL Signal)

RC: Remote ON/OFF AUXG: Auxiliary Ground OLP: OLP/OL-SD:OLP mode select

■ Block Diagram




PFC fosc: 88KHz

■ Derating Curve

■ Static Characteristics

■ Function Manual

1.Remote ON/OFF

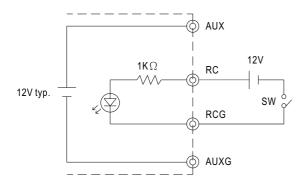

- (1)Remote ON/OFF control becomes available by applying voltage in CN1 & CN2 & CN3.
- (2) Table 1.1 shows the specification of Remote ON/OFF function.
- (3)Fig.1.2 shows the example to connect Remote ON/OFF control function.

Table 1.1 Specification of Remote ON/OFF

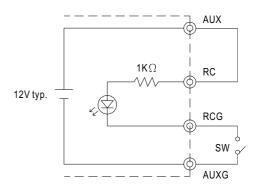
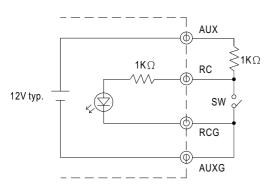

	Connection Method		Fig. 1.2(A)	Fig. 1.2(B)	Fig. 1.2(C)	
	SW Logic	Output on	SW Open	SW Open	SW Close	
SW LOGIC	Output off	SW Close	SW Close	SW Open		

Fig.1.2 Examples of connecting remote ON/OFF


(A)Using external voltage source

(B)Using internal 12V auxiliary output

(C)Using internal 12V auxiliary output

2. Alarm Signal Output

- (1)Alarm signal is sent out through "P OK" & "P OK GND" and P OK2 & P OK GND2 pins.
- (2)An external voltage source is required for this function.
- (3) Table 2.1 explain the alarm function built-in the power supply.

Function	Description	Output of alarm(P OK, Relay Contact)	Output of alarm(P OK2, TTL Signal)
P OK	The signal is "Low" when the power supply is above 80% of the rated output voltage-Power OK	Low (0.5V max at 500mA)	Low (0.5V max at 10mA)
POK	The signal turns to be "High" when the power supply is under 80% of the rated output voltage-Power Fail	High or open (External applied voltage, 500mA max.)	High or open (External applied voltage, 10mA max.)

Table 2.1 Explanation of alarm

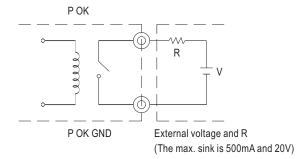


Fig. 2.2 Internal circuit of P OK (Relay, total is 10W)

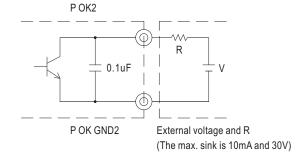


Fig. 2.3 Internal circuit of P OK2 (Open collector method)

3. Output Voltage TRIM

(1)Connecting an external DC source between PV & -S on CN1 or CN2, and +S & +V, -S & -V also need to be connected that is shown in Fig. 3.1.

(2)Adjustment of output voltage is possible between 20~110%(Typ.) of the rated output which is shown in Fig. 3.2. Reducing output current is required when the output voltage is trimmed up.

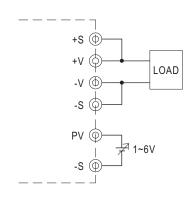
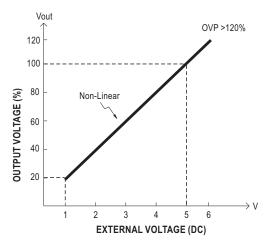



Fig. 3.1 Add on 1~6V external voltage

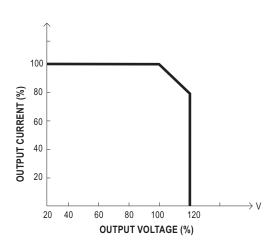
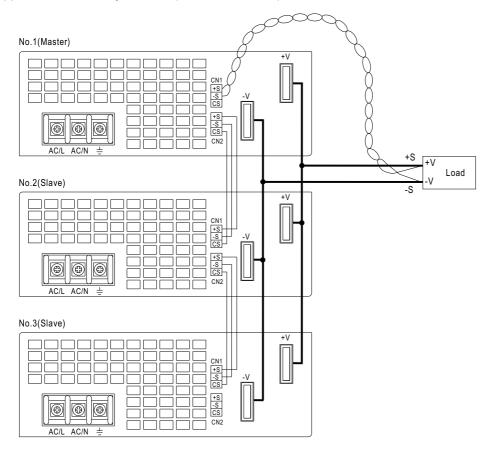



Fig. 3.2 Output voltage trimming

4. Current Sharing

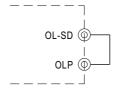
- (1)Parallel operation is available by connecting the units shown as below
 - (+S,-S and CS are connected mutually in parallel):
- (2) The voltage difference among each output should be minimized that less than ±2% is required.
- (3)The total output current must not exceed the value determined by the following equation. (Output current at parallel operation)=(The rated current per unit) x (Number of unit) x 0.9
- (4) In parallel operation 3 units is the maximum, please consult the manufacturer for other applications.
- (5) When remote sensing is used in parallel operation, the sensing wire must be connected only to the master unit.
- (6) Wires of remote sensing should be kept at least 10 cm from input wires.

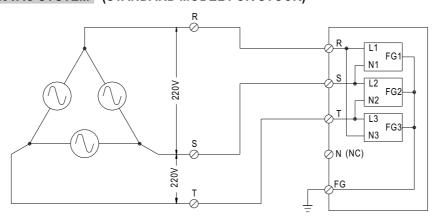
- (7) When in parallel operation, the minimum output load should be greater than 2% of total output load. (Min. Load >3% rated current per unitxnumber of unit)
- (8) Under parallel operation, the "output voltage trim" function is not available.

5.Select O.L.P mode

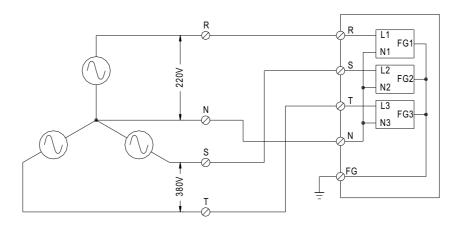
- (1)Remove the shorting connector on CN3 that is shown in Fig 5.1, the O.L.P. mode will be "continuous constant current limiting".
- (2)Insert the shorting connector on CN3 that is shown in Fig 5.2, the O.L.P. mode will be "constant current limiting with delay shutdown after 5 seconds, re-power on to recover.

Fig. 5.1 Remove the CN3 OLP Mode : constant current limiting

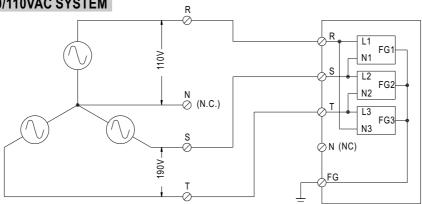



Fig. 5.2 Insert the CN3

OLP Mode: constant current limiting with delay shutdown after 5 seconds



6.Three Phase Connect


■ FIG. A: 3 ϕ 3W 220VAC SYSTEM (STANDARD MODEL FOR STOCK)

\blacksquare FIG. B: 3 ϕ 4W 220/380VAC SYSTEM

\blacksquare FIG. C: 3 ϕ 4W 190/110VAC SYSTEM

